met”Cl’ Metrici PPD - third party integration
accurate recognition December 2021

Metrici Parking Place Detector
~ Third party integration ~

Metrici Parking Place Detector (PPD) consists of one or several applications for detecting and
recognising the status (occupied or free) of each monithorized parking spot. PPD engines are independent
applications that analyse real time video streams from the IP cameras and send, by HTTP POSTS, the
information regarding each status change of monithorized parking places, to the data display system. This
system is formed of a MySQL relational data base and a collection of php scripts.

Integration with third party systems can be made by one of the following methods:

1. By PUSH directly from the PPD engines to the external system;
2. By GET from the reporting interface, using the methods from API.

1. PUSH Connection from PPD engines to the external system.

This working mode is useful when one wishes to receive parking events in real time. The drawback
is that the data do not reach the web interface directly, being left to the programmer to create a
retransmission mechanism for it, if necessary.

For each parking place, the PPD engine generates an event when a transition occures, from free to
occupied or from occupied to free.

For each event, the PPD engine sends the data by PUSH over HTTP, in a multipart/form-data
format defined in RFC2388 (http://tools.ietf.org/html/rfc2388), to an URL, which can be defined in the
application interface, ‘Reporting URL’ field.

www.metrici.ro Pagina 1/ 10

metnCI’ Metrici PPD - third party integration
accurate recognition December 2021

Metrici Parking Place Detector v1.1 - Settings X

Engine working mode & External trigger
Input stream

Companion stream

Live view
Reporting URL: | http://localhost/iojppd/new_parking_place_event.php
Reporting - authkey [id: |O3IKCE-ZE / |12U

Status change delay: 5|

Cancel Save

The data sent are the following:

id (int, camera id, it can be from your data base, ex: 1 = CAM1, 2 = CAM2)

space_id (int, id of the parking place, relative of this camera)

status (int, 0= free, 1= busy or occupied)

changed_at (string, yyyy-mm-dd_hh:mm:ss)

x (float, x coordinate of the parking place relative to the image width, between 0 and 1)
y (float, y coordinate of the parking place relative to the image height, between 0 and 1)
triggerkey (string, unique key which can be generated by an external trigger source)
primary_image (jpeg base64 encoded, photo of the scene)

has_companion (int, 1 if exists, 0 if there isn't defined any companion camera)
companion_image (jpeg base64 encoded, companion photo)

object_type (string, possible values: Vehicles, Boats)

www.metrici.ro Pagina 2/ 10

met”Cl’ Metrici PPD - third party integration
accurate recognition December 2021

object_subtype (string: possible values: Car, Motorbike, Bus, Truck, Van, SUV/Pickup,
Excavator/Bulldozer, Tram, Jet-ski, Inflatable, Dinghy, Sailboat, Motor-yacht, Passenger-ship, Catamaran,
Other)

auth (string, md5 generated using a private key, it can be used for authentication)

auth = md5(id + space_id + status + changed_at + x + y + has_companion +
reporting_check _action_authkey)

If the request is sent correctly, the external system should prompt with an approval message.
If there is no answer, the PPD engine will try to resend the data subsequently. The approval message must
contain the string bb1e8f805814a0b8e465601346872377.

Each application has a log file where all actions and statuses are submitted. All log files are
located into the metrici folder and each has a name composed of the id of the application and .log
extension (ex: 0.log, 1.log and so on). Below it's an example of a transaction related to an external system
located at the address: http://dev2.metrici.ro/io/ppd/new_parking_place_event.php

2018-11-16 13:18:23 [Metrici Parking Place Detector v1.1] Event Free | 2018-11-16_13:18:23 | 0.46875 |
0.904105 | none for space id 5 was inserted into the local buffer

2018-11-16 13:18:23 [Metrici Parking Place Detector v1.1] Reporting event for space id 5 was sent to
http://dev2.metrici.ro/io/ppd/new_parking_place_event.php

2018-11-16 13:18:23 [Metrici Parking Place Detector v1.1] Reporting reply received:
bb1e8f805814a0b8e465601346872377

2018-11-16 13:33:23 [Metrici Parking Place Detector v1.1] Event Free | 2018-11-16_13:33:22 | 0.65 |
0.468632 | none for space id 13 was inserted into the local buffer

2018-11-16 13:33:23 [Metrici Parking Place Detector v1.1] Reporting event for space id 13 was sent to
http://dev2.metrici.ro/io/ppd/new_parking place_event.php

2018-11-16 13:33:23 [Metrici Parking Place Detector v1.1] Reporting reply received:
bb1e8f805814a0b8e465601346872377

2018-11-16 13:34:59 [Metrici Parking Place Detector v1.1] Event Busy | 2018-11-16 13:34:58 | 0.65 |
0.468632 | none for space id 13 was inserted into the local buffer

2018-11-16 13:34:59 [Metrici Parking Place Detector v1.1] Reporting event for space id 13 was sent to
http://dev2.metrici.ro/io/ppd/new_parking_place_event.php

2018-11-16 13:34:59 [Metrici Parking Place Detector v1.1] Reporting reply received:
bb1e8f805814a0b8e465601346872377

2018-11-16 13:39:02 [Metrici Parking Place Detector v1.1] Event Busy | 2018-11-16 13:39:01 | 0.35125 |

www.metrici.ro Pagina 3/ 10

met”Cl’ Metrici PPD - third party integration
accurate recognition December 2021

0.901895 | none for space id 6 was inserted into the local buffer

2018-11-16 13:39:02 [Metrici Parking Place Detector v1.1] Reporting event for space id 6 was sent to
http://dev2.metrici.ro/io/ppd/new_parking place_event.php

2018-11-16 13:39:03 [Metrici Parking Place Detector v1.1] Reporting reply received:
bb1e8f805814a0b8e465601346872377

2. Connection from the external system, by the API of the reporting interface

This working mode is useful for analyses and complex reports, subsequent to the occurrence of
events, without being necessary to keep them in database located on the external system.

Using GET type requests, over HTTP, to http://IP_ADDRESS _OF METRICI_SERVER/api/ppd/, you can
get data in the following formats: jSON (output=json) or XML (output = xml).
Example:

GET http://192.168.1.100/api/ppd/get_places by camera.php?id=14&output=json

JSON RESPONSE:
{"error":false,"response":{"body":[{"id":"1","status":"0","changed_at":"2018-11-28
17:07:21","x":"0.9675","y":"0.910737"},{"id":"2","status":"0","changed_at":"2018-11-28
18:24:52","x":"0.8775","y":"0.924"},{"id":"3","status":"0","changed_at":"2018-11-28
17:55:05","x":"0.755","y":"0.919579"},{"id":"4","status":"0","changed_at":"2018-11-28
17:16:59","x":"0.6175","y":"0.906316"},{"id":"5","status":"0","changed_at":"2018-11-28
18:29:36","x":"0.46875","y":"0.904105"},{"id":"6","status":"0","changed_at":"2018-11-28
17:59:19","x":"0.35125","y":"0.901895"},{"id":"7","status":"0","changed_at":"2018-11-28
16:52:54","x":"0.24875","y":"0.870947"},{"id":"8","status":"0","changed_at":"2018-11-28
17:34:21","x":"0.14875","y":"0.820105"},{"id":"9","status":"0","changed_at":"2018-11-28
17:35:44","x":"0.9675","y":"0.481895"},{"id":"10","status":"0","changed_at":"2018-11-28
16:17:31","x":"0.90375","y":"0.479684"},{"id":"11","status":"1","changed_at":"2018-11-28
16:14:51","x":"0.82375","y":"0.475263"},{"id":"12","status":"1","changed_at":"2018-11-28
17:24:58","x":"0.7475","y":"0.473053"},{"id":"13","status":"0","changed_at":"2018-11-28
18:29:34","x":"0.65","y":"0.468632"},{"id":"14","status":"1","changed_at":"2018-11-28
17:31:07","x":"0.565","y":"0.466421"},{"id":"15","status":"1","changed_at":"2018-11-28
07:14:15","x":"0.49125","y":"0.459789"},{"id":"16","status":"1","changed_at":"2018-11-28
06:02:16","x":"0.41875","y":"0.448737"},{"id":"17","status":"1","changed_at":"2018-11-28
04:59:57","x":"0.3575","y":"0.444316"},{"id":"18","status":"1","changed_at":"2018-11-28

www.metrici.ro Pagina 4/ 10

metnC" Metrici PPD - third party integration

accurate recognition

December 2021

15:00:36","x":"0.3","y":"0.437684"}],"header":{"duration":"0.01"} } }

Methods:

/get_locations_list - return the list of all defined locations

Entry parameters:

» output (string, xml or json)

Example:
http://192.168.1.100/api/ppd/get_locations_list.php?output=json

/get_cameras_list - return the list of cameras defined into a location

Entry parameters:
» id (integer, id of the location, obtained using /get_locations_list method)
* output (string, xml or json)

Example:
http://192.168.1.100/api/ppd/get_cameras_list.php?id=1&output=xml

/get_groups_list - return the list of groups defined into a location

Entry parameters:
+ id (integer, id of the location, obtained using /get_locations_list method)
» output (string, xml or json)

Example:
http://192.168.1.100/api/ppd/get_groups_list.php?id=1&output=xml

cameras defined into a location

/get_places_by location - return the current status (free or busy) of all parking places seen by all

Entry parameters:
* id (integer, id of the location, obtained using /get_locations_list method)
* output (string, xml or json)

Example:
http://192.168.1.100/api/ppd/get_places by location.php?id=1&output=json

www.metrici.ro

Pagina 5/ 10

met”Cl’ Metrici PPD - third party integration
accurate recognition December 2021

/get_places_by camera - return the current status (free or busy) of all parking places seen by a
camera

Entry parameters:
+ id (integer, id of the camera, obtained using /get_cameras_list method)
» output (string, xml or json)

Example:

http://192.168.1.100/api/ppd/get_places by camera.php?id=1&output=json

/get_places_by group - return the current status (free or busy) of all parking places defined into a
group

Entry parameters:
+ id (integer, id of the group, obtained using /get_groups_list method)

* output (string, xml or json)

Example:
http://192.168.1.100/api/ppd/get_places by group.php?id=1&output=json

/get_counters_by location - return the total, free and busy number of places defined into a location

Entry parameters:
+ id (integer, id of the location, obtained using /get_location_list method)
» output (string, xml or json)

Example:
http://192.168.1.100/api/ppd/get_counters by location.php?id=1&output=json

/get_counters_by camera - return the total, free and busy number of places seen by a camera

Entry parameters:
» id (integer, id of the camera, obtained using /get_cameras_list method)
» output (string, xml or json)

Example:
http://192.168.1.100/api/ppd/get_counters by camera.php?id=1&output=json

www.metrici.ro Pagina 6/ 10

met”Cl’ Metrici PPD - third party integration
accurate recognition December 2021

/get_counters_by group - return the total, free and busy humber of places defined into a group

Entry parameters:
+ id (integer, id of the group, obtained using /get_groups_list method)
» output (string, xml or json)

Example:

http://192.168.1.100/api/ppd/get_counters by group.php?id=1&output=json

/get_status_of place - return the current status of a particular parking place

Entry parameters:
» id (integer, id of the parking place, obtained using /get places by camera method)
« camera_id (integer, id of the camera, obtained using /get_cameras_list method)

* output (string, xml or json)

Example:
http://192.168.1.100/api/ppd/get_status_of place.php?id=1&camera_id=1&output=json

www.metrici.ro Pagina 7/ 10

metﬂCI’ Metrici PPD - third party integration
accurate recognition December 2021

ANNEX 1 - Exemple of code, PUSH from the PPD engine, endpoint check action event

<?php

// v1.0
// this is given only as an example to see how one can parse and use POST
parameters reveived from Metrici PPD engine

$Sok_response= "bble8£805814a0b8e465601346872377";
$msg= ""; //response message

// retrieve parameters from POST

if (isset($_POST['id']))
{
$id= (int)strip_tags($_POST['id']);

$id= 0;
}

if (isset($_POST['space_id']))
{
$space_id= (int)strip tags($_POST['space_id']);

$space_id= 0;
}

if (isset($_POST['status']))
{
$status= (int)strip_ tags($_POST['status']);

$Sstatus= 0;
}

if (isset($_POST['changed at'l]))
{
$changed at= strip tags($_POST['changed at']):;

$changed at= "";
}

if (isset($_POST['x']))
{
$x= (float)strip_tags($_POST['x']);

www.metrici.ro Pagina 8/ 10

metnCl’ Metrici PPD - third party integration

accurate recognition December 2021
}
else
{
$x= 0.0;
}
if (isset($_POST['y'l))
{
$y= (float)strip tags($_POST['y']l):
}
else
{
Sy= 0.0;
}
if (isset($_POST['has companion']))
{
$has_companion= (int)strip tags($_POST['has_companion']) ;
}
else
{
$has_companion= 0;
}
if (isset($_POST|['triggerkey'l]))
{
$Striggerkey= strip tags($_POST['triggerkey']):;
}
else
{
$triggerkey= "none";
}
if (isset($_POST['auth']))
{
Sauth= strip tags($_POST['auth']);
}
else
{
$auth= "";
}
if ($id!'= 0 && $space_id!= 0 && $status!= -1 && Schanged at!= "" && Sauth!= "")
//not junk

{
//... code ...//
//... retrieve authkey for this id, from your database
//... code ...//
Sauthkey="'XXXXXX';

if ($auth!= md5($id.$space_id.$status.$changed at.$x.$y.Shas_companion.

$authkey))
{

$msg= "Error: unauthenticated request!";

}
else //all good, authenticated request

www.metrici.ro

Pagina 9/10

metﬂCI’ Metrici PPD - third party integration
accurate recognition December 2021

$changed at= str_replace("_", " ", $changed at);
$primary image= file get contents($_FILES["primary image"]
["tmp name"]) ;

//$primary image = mysql real escape_string($primary image) ;
//use it only when you want to insert the image into database

//... code ...//
//... insert new data into your database
//... code ...//
$msg= $ok_response;
}

echo $msg; //send feedback to PPD engine

?>

www.metrici.ro Pagina 10/ 10

